Investigation of a New Flux-Modulated Permanent Magnet Brushless Motor for EVs

نویسندگان

  • Ying Fan
  • Lingling Gu
  • Yong Luo
  • Xuedong Han
  • Ming Cheng
چکیده

This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Technique on the Analytical Calculation of Open-Circuit Flux Density Distribution in Brushless Permanent-Magnet Motor

Both the cogging and electromagnetic torques depends on the shape of the flux density distribution in the airgap region. A two-dimensional (2-D) analytical method for predicting the open- circuit airgap field distribution in brushless permanent magnet motors, considering the direction of magnetization, i.e., radial or parallel, and the effect of real shape of stator slot-openings is presented i...

متن کامل

Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor

Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

Cogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique

Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...

متن کامل

Optimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...

متن کامل

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014